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Abstract: The definition and applications of the motion of
magnetic lines of force are reviewed and illustrated.

First, the concept of such a motion is introduced as an

aid

(s

o describing the evolution of a known magnetic field.

It is next shown that a known velocity field in a perfectly
conducting fluid with embedded magnetic field may be regarded

as describing the velocity of the magnetic field lines,there. The
consequences of such a flow on the field are then derived.
including the properties of flux and line preservation and
Cauchy's general solution. The discussion is then extended to
fluids having a finite high conductivity, with accent on the

role of X-type neutral points in the magnetic field. The review
concludes with a brief description of existing theories on the

behavior of such neuntral points.



(1) Introduction

Every theory in the exact sciences is based on a math-
ematical formalism which derives its results from some given
fundamental relations, In addition, however, it is often possible
to formnlate statements of a gqualitative nature or, at least,
with some intwitive content, about the swbject described by
the theory. Such statements are very useful, for they give
insigﬁt into the subject's behavior and allow the deduction of
general results without excessive calcnlation.

The statement "in highly condnctive fluids, magnetic lines
of force move with the material' belongs to this class. In
complicated geophysical and astrophysical sitvations this is
often the first guide to the evoluntion of the system being in-
vestigated, from which one may continve, say, by devising simple
(e.g. two-dimensional) mathematical models.

Unfortunately, the concept of the motion of field lines
has at times caused misitnderstanding among those not familiar
with its precise meaning and formalistic background. The purpose
of this article is to review this meaning and backgronnd and to
describe the limitations of the concept and some of its past
applications. 1t is hoped that by following the exposition the
reader will gradually become familiar with the subject and acqnire
the "intuvitive feeling" for it on which much of its application
depends,

A great part of the theory of motion of field lines parallels

earlier work on vortex lines in ideal flnids. This follows from



the basic equation for the development of the vorticity (

in such fluids
g% -Vx(vxQ =0 (1-1)

which is formally identical with the equation governing the
development of the magnetic field B in perfectly conducting
fluids

L-Vx(yxp) =0 (1-2)

The latter equation is readily obtained by noting that the

first order electric field E* in the frame of the moving fluid is
E* = E + (v x B) (1-3)

and that Ohm's law then is written
j* = g E* (1-4)

Taking the curl of (1-4) and applying Maxwell's equations
yields equation (1-2), in the limit as gax, J¥peo.

An early use of the concept of perfect conductors is due to
Maxwell (1873; art. 654) who showed that a perfectly conducting
closed shell shields its interior from magnetic variations arising
outside it. Thus when the conductivity of any material tends to
infinity, the magnetic flux existing in it becomes "frozen in'
and ceases to be influenced by external fields. Such ideas of

"frozen flux" were expressed by early theories of superconductivity




which, however, did not consider a fluid medium and which

were abandoned after the discovery in 1933 of the Meissner
effect. The viewpoint that in astrophysics ionized gases can
often be regarded as highly conducting fluids in which '"the
liquid is 'fastened' to the lines of force'" was first advanced
by Alfvén (1942-b) who also used the expression that in this
case the lines of force are "frozen-in'" into the fluid (Alfvén,
19/2-a). The extension of the theorem of conservation of
vorticity, derived by Helmholtz in 1858 (and independently, by
Dirichlet) to the case .of hydromagnetic flow, probably occured
at about that time, for Walén in his work on solar magnetism
(1946, eq. 12) refers to it as '"well known". The fundamental
vorticity equation of Cauchy (1815) was similarly translated
into hydromagnetic terms by Lundquist and Cowling (Lundqnist,
1951, 1952) and many of the remaining details of the analogy
were worked out be Mawersberger (1964). 1In the present work,
hydromagnetic equations which originated in the study of vorticity
will be referred to by their original names.

The theory described here deals with highly conducting
fluids; most of its applications, however, are to plasmas. In
order to justify the extension of (1-2) to plasmas, two extreme
situations will be considered. If the plasma is dense and
dominated by collisions, fluid equations may be derived., Ohm's
law is then considerably more involved than (1-4) (Spitzer, 1962
eq. 2-21), but with appropriate approximations only the pressure

Vpi (subscript i for ions) and the gravitational field ¥ have to
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be taken into account (Spitzer, 1962).

m
. 1 i
i=0 (E% —-nee vp T Ze vg) (1-5)

If the electron density ng is approximately constant or if P;
can be regarded as a function of it alone, the additional terms
disappear when the curl is taken and (1-2) is obtained as before.
In strong magnetic fields ¢ may be anisotropic, but as long as
the current flows "easily" (in the sense of eq. 4-3) in any
given direction, the high-conductivity approximation can be
expected to hold.

At the other extreme one finds the ''guiding center fluid"
in which collisions are extremely rare, It may be shown,
however (Parker, 1957a; Thompson, 1962, ch. 8, §7) that if the
magnetic field is sufficiently strong to maintain the guiding
center approximation, the electric field E* of eq. (1-3) vanishes
in this case to lowest order in the ratio between the gyration
time and the time scale of the macroscopic motions. The basic
equation (1-2) then follows, so that the guiding center fluid may
be regarded as a nearly perfect conductor in this connection. It
should be added, also, that the slippage of lines of force in a
dense plasma due to finite conductivity is much more readily
analyzed than that occurring near the fringes of the magnetic
field in a guiding-center plasma, in a region where the guiding
center approximation becomes inaccurate.

The motions discussed here will be relatively slow ones.
Nonrelativistic transformations (e.g. equation 1-3) will be used,

_4_




the displacement crrrent will always be neglected and wave
phenomena will not be included.

(2) Euler Potentials

The magnetic field is solenoidal and therefore can be
represented by two scalars. This representation may be achieved
in several ways; for strdying magnetic lines of force it is

advantageous to introduce Euler potentials (Eunler, 1770, §26,

8495 Truesdell, 1954, §13) usnally denoted by o and B, with the

property
B =W x VW =V x (aV3) (2-1)

By this definition B is tangent to each of the families of svrfaces
a = constant and @ = constant. The line of intersection of any

two such svrfaces therefore defines a line of force characterized
by the associated values of o and B, Other commonly wvsed methods
of representing B afford no such direct way of evalvating lines

of force.

The vse of Euler potentials also facilitates the introduction
of tubes of flux. Consider a flux tube with a rhomboidal cross
section, defined by the 4 lines of force (a, B), (g + da, B),

(60 B+ d8) and (o + dg, B -+ d8). The flux enclosed by the tube,

evaluated in any plane normal to B, is

d¢ = [ B-ds = § a V8 + di = § adB (2-2)

On two sides of the rhomboid B is constant and no contribvtion

to the integral arises, while the two remaining ones contribute

- 5 -



(o + de)dB and -(qu). Thus
d = dadg (2-3)

If ¢ and g are supplemented by a third spatial coordinate w,

the flux through an area S on a surface y = constant is then

b = f dadB (2-5)

In static fields, the magnetostatic potential may be
chosen as y. It shouvld be noted however, that in general it
is not possible to stipulate that vy Varies only along the line
of force, i.e. that V¥ is normal to Va and VR. Such a stipulation
implies B = eVy (¢ some scalar function of position), from which
B - (¥x B) =0, acondition which is not in general met.

The Euler potentials o and B each satisfy the first order

partial differential equation

i

B+ VE=0 (2-6)

and the possibility of expressing B by them may be proved (e.g.
Phillips, 1933; §20) by using the existence proofs for solutions
of this equation. The potentials are not uniquely defined,
however: any independent pair of solutions to (2-6) leads to
some choice of ¢ and B. Given a pair of such potentials, an

alternate choice (e.g. Ray, 1963) is h(a, B) and g(a, B), provided

3(g,h) -1 (2-7)




Euler potentials have two major disadvantages. First of
all, the representation is not linear and therefore the super-
position of Euler potentials due to several sources is not in
general valid. As a result, it is not possible to derive the
functions ¢ and B analytically, except in some simple field
configurations. One suchase is provided by axisymmetric poloidal
fields, such as that of a magnetic dipole. The vector potential
A may then be taken in the azimuthal direction, leading to the

choice

M i (2,_8)

=% r sin 8 L s}

In fluid dynamics eq. (2-8) is often used to describe an
axisymmetric fluid velocity field, with (-g) called the Stokes
stream function (Milne-Thomson 1960, Chapt. 15; O'Brien, 1963).
Superposition of potentials exists in this case, all of them
sharing the same B. Another case for which @ can be derived

analytically (and superposed) is provided by purely toroidal fields
B=Vxrzry= Vyxvit?

Still another is that of a two-dimensional field, where B
neither depends on z nor has a component in its direction. One

may then choose

B=VxAi = vA (x,y) x VZ




The second and more serious disadvantage of Euler potentials
is that in most magnetic fields lines of force are not closed and
therefore attain infinite length in a bounded region of space.

Consider (McDonald, 1954) a current-bearing circle r = R in
the z = 0 plane of a cylindrical coordinate system. Because of
axial symmetry, the g surfaces are toroidal rings and the B sur-
faces meridional planes in which the lines of force, which are
closed,lie. Now let a current filament be added along the z axis,
giving the lines of force a slant and thns transforming them into
helices. 1t may be shown that the g derived without the current
filament may still be uvsed; however, a B surface now resembles
an archimedean screw with its axis twisted around the circle and
its ends, in general, not meeting. Except for those cases in
which a line of force returns into itself after a finite length
(there is an infinite number of such cases, but of measure zero),
a line of force will range all over its g-surface, with different
sections coming arbitrarily close to each other but never meeting.

Given a point on the g-surface it is possible to construct a
g-surface through it. This surface, however, if continved for a
sufficient length, will fill a region in space and approach
arbitrarily close to any given point in it. It is then impossible
to construct a family of B-surfaces continvously dependent on a

parameter. The characterization of lines of force by families of

Evler potentials is therefore not feasible when such lines are

bounded bnt of infinite length.

The difficulty may be lifted by introducing a sirface of
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discontinuity which artificially terminates the (@, g) lines
(Dungey, 1958; §3.1). In the example given the part of the
plane z = O with r¢R may be chosen as such a surface, with

each pair of parameters (g, B) defining a segment of a line of
force from the point where it leaves the top of the plane to
where it reaches the bottom. One may still consider infinitely
long lines of force but such a line is then characterized by an
infinite number of B values, with B changing every time the line
crosses the surface of discontinuity.

(3) Kinematics of Lines of Force

The first problem associated with motion of lines of force
may be posed as follows. Given a magnetic field which changes
in time in a known way, can an alternative description of this
time -dependence be made by assigning a velocity to its lines of
force?

In classical fluid dynamics, the rate of change in some
quantity A, as observed by a particle moving with the fluid's

velocity g, is its '‘material derivative"

- A (3-1)

ala
o>
i
OIPJ
o>
+
s

If A is convected with the flow, the material derivative
vanishes., It therefore seems reasonable to call u the velocity

of the lines of force if it satisfies

99
at+g°Va=O
ot




A velocity satisfying the preceding condition can always

be found (Northrop, 1963), namely

(3B g, 2 2 ;
u= (B v -2« (3-3)

as may be verified by substitution. This solution is not

unique: any velocity parallel to B may be added to it without
changing the validity of (3-2), since B is normal to both Vg and
V8. Because the component of u parallel to B is arbitrary, it

is customary to set it equal to zero; when discussing the velocity
of a line of force, then, only the component normal to B is
implied.

This definition (3-2) for the velocity of the lines of force
is not entirely satisfactory: the Euvler potentials are not
directly observable and it is not a-priori certain that equations
(3-2) have to be satisfied. Indeed, since at any time there exist
many equivalent choices of ¢ and B describiné the same B, one may
always add to the velocity satisfying (3-2) another velocity
which describes a time-dependent transformation of Euler potentials,
without altering the physical picture. Such a velocity will be
termed a '"relabeling velocity". For instance, in an axisymmetric
field one can add any (not necessarily steady) angular velocity
around the symmetry axis, for such a velocity merely relabels the
lines and has no observable effect.

Following Newcomb (1958) we therefore broaden the definition

and regard as a 'velocity of lines of force" any velocity v
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satisfying eq. (1-2)

B .
gi ~Vx (vxB)=0

It may be verified that u of eq. (3-3) is one of the solutions.
Newcomb showed that by this definition all '"verifiable con-
sequences' which are usually associated with the concept of the
motion of lines of force are satisfied: the two most important
of these consequences, namely line preservation and flux pre-
servation, will be discussed separately in Section 4.

The most general solution of (1-2) will be the sum of the

particular solution (3-3) and the general solution w of

Vx(wxB)=0 (3-4)

If one specifies, as before, (w * B) = O, this general solution

has the form

(3-5)

| o

Yy x
= -
B

where § (o: B) is a scalar conserved along a line of force.
Since for any 'relabeling velocity" which expresses no variation
in the field, equation (1-2) reduces to (3-4), it is clear that
such a velocity will have the form (3-5).

(4) The Motion of Perfectly Conducting Fluids

In a conducting fluid the presence of an electric field
cavses current to flow. If the fluid is moving, the relevant

electric field is the one taken in a frame of reference moving

i1



with the fluid; to first order this field is given by eq. (1-3)
Ex = E + (v x B)

In the simplest case the relation between E* and the current
density j* in the moving frame follows Ohm's law and is linear

and isotropic as in (1-4)
j* = o E*

For ionized gases in a magnetic field the relation may be
anisotropic (the conductivity ¢ is a tensor) or even nonlinear,
but in general l* and E* increase together. For simplicity,

a simple ohmic relationship with scalar g will be assumed here,
as well as those approximations valid when v € c. By Maxwell's

equations

L _9x(vxp) -9xLl (vxB) (4-1)
ot V)

or, if g is constant everywhere

3B
= -¥x (v x B) = — V°B (4-2)

_ 1
ot (PR
The case of interest here occurs when ¢ is very large, so that
the term involving it may be neglected and (4-1) reduces to
(1-2). A rough but useful criterion to indicate when such an
omission is permissible is furnished by the magnetic Reynolds

number (Elsasser 1955, 1956, 1957). 1If L is a typical dimension

over which B varies and V is a typical velocity, the relative
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magnitude of the terms in (4-3) may be estimated by replacing
¥ with L' and v by V; vector character is neglected in this
crude approach. 1t then follows that the right hand term
is negligible only if the dimensionless 'magnetic Reynolds

number!"
R = w oLV (4-3)

is much larger than unity. It is important to note that
increasing the scale of the flow increases Rm; this is why
conditions of "perfect conduction'" occur mich more readily on
astrophysical and geophysical scales than in the laboratory,

The discussion in this work will be mainly concerned with
the limiting case qum, for it is then that the fluid velocity
satisfies the criterion (1-2) for the velocity of the lines of
force. In ordinary hydrodynamics, flows with large Reynolds
numbers are unstable and tend to break up into turbulent eddies.
While turbulence may also occur in the flow of conducting fluids
and of plasmas, such behavior will not be considered here since
relatively little has been established about this subject to
date (see Batchelor, 1950).

The most important properties of B following eq. (l1-2) are

flux preservation and line preservation.

A flow v is said to be flux preserving for a vector field

Q if the flux of Q through a surface defined by a closed filament

of flvid particles is conserved. It will now be shown that for a



given magnetic field B a flow v is flux preserving if (1-2)
is satisfied.
Let a fluid filament initially following the closed contour

S be given and let § be the initial flux of B through it., A
short interval dt later, each element d{ of the contour will
have been displaced by an amount v dt, sweeping in the process
an area (v x d4) dt (Figure 1). In this time interval, § changes
by an amount d$, ascribable to two causes. The time variation
of the field contributes the surface intergral

[ . daat (4-4)

s ot
while the variation of the area bounded by the filament adds

the flux through the area swept by it (figure 1), equaling

$§Bx(vxdg) de = ~fVx (vxB) xdadt  (45)

Thus

dg = f ( %% ~Vx (v x g)) x dA dt (4-6)

and this vanishes if (1-2) holds. Because the contour is
arbitrary, (1-2) is not only sufficient but also necessary for
flux preservation. For a nonsolenoidal vector field Q the

condition for flux preservation becomes

ga%— x (v xQ) +v (¥ye=Q =0 (4-7)

- 14 -




A motion is called line preserving if two fluid particles

initially connected by a line of force continue to be so
throughout their motion. A flux-preserving motion is always
line preserving, by the fcllowing
argument (for an alternative derivation, see Newcomb, 1958).
Consider a sheet ABCD of fluid particles which forms part
of a magnetic flvux tube (Figure 2), with points A and B chosen
so as to lie, at some initial instant, on the same line of force.
The magnetic flux throvgh the sheet and through any closed contour
on it then vanishes, and by flux preservation this property is
maintained as time progresses. The sheet will therefore always
be part of a flux tube,
The same arguments hold for a sheet ABC'D'on another flux
tube which initially intersects the first one along the field
line AB. As time passes, A and B will continue to belong to

both flux tubes and therefore lie on their intersection, which

defines a line of force. Since the choice of A and B is in no

other way restricted, the motion is line preserving.

The condition for line preservation is less strict than that
for flux preservation. By the Helmholtz-Zorawski criterion
(Zorawski, 1900;.for further references see Truesdell, 1954;
Truesdell and Toupin, 1960; also Newcomb, 1958, eq. 85) a nec-
essary and sufficient condition for line preservation is

[§8~Vx(xxg)+z(v°9)]xg=0 (4-8)

The above demonstrates that flux preservation is not necessary

- 15 -



for line preservation; for instance, motion in a force-free
field with finite, constant resistivity is line preserving but
not flux preserving. The following proof is due to Prim and
Truesdell (1950). Let the equation of an open fluid filament
at time t, given in terms of some parameter s (e.g. the arc

distance from a given particle in the filament) be
x=x (s, t) (4-9)

Then dx/ds is tangent to the filament and the condition

for line preservation is that if initially

%X x Q=0 (4-10)

so that the filament is aligned with a field line of Q, then
this condition is met at all times. The time variation of the

quantity under consideration is

d fax _ /s 3% d
wlre) - (2 g - (2o
3 3x  dQ
= (a—i . vz) X 9 + a—s X dt) (4_11)

Now (4-10) is equivalent to

— =N (4-12)

If (4-8) holds and (4-10) is initially given, one gets for the

initial variation of the expression on the left of (4-10)

- 16 -




-d-(éé x 9) = A Q= (g% -Q VX) (4-13)

xgx(g-%—vxuxg)*uvog)):o

and therefore (4-10) holds for later times as well.

(5) Cauchy’s Integral

Equation (1-2) for the motion of a perfectly condnctirg
fluid involves both B and v. For those cases in which both
quantities have to be derived theoretically another equation
involving both is required, as well as a set of appropriate
boundary conditions. The additional equation is the hydro-
magnetic generalization of the Navier-Stokes formula and the
solution of the combined set, even in simple cases, is a for-
midable task.

In practice, however, v may coften be obtained separately,
as for example, when it may be deduced from observations (e.g.
the differential rotation of the sim) or when magnetic forces
are negligible in comparison with others acting on the flvid, in
which case the hydromagnetic equation may be separately solved
for v. 1In such cases one may regard v in eq. (1-2) as given
and seek a solution for B.

As was noted before, eq. (1-2) was first studied with ()
replacing B, in which case it describes the development of
vorticity in an ideal fluid. It was in this context that its

general solution was achieved by Cauchy (1815), who transformed
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the flux-conservation of ( into the material conservation of a
related quantity.

Equation (1-2) may be rewritten

- Vv =B (V- v) (5-1)

b
1]
S

+
<
<]
{0

|
|0

Substituting the equation of continuity

%% +p(V-ey) =0 (5-2)

gives, after several steps

i(%)—%- Vv=20 (5-3)
which is known (when B is replaced by ED as Helmholtz's
equation. 1Its form suggests a search for an integrating
factor ¢ (of yet undetermined tensorial character) reducing

the equation to the form

g_(_g_,c) -0 (5-4)

2.e =8 "¢ (5-5)
p

In order to express the integrating factor, material

coordinates (sometimes called Lagrangian coordinates, though

“

their wse is due to Euler; see Truesdell 195/, footnote in §l4)




have to be introduced. 1ts derivation below follows Elsasser
(1956); some other derivations may be found in the works of
Brand (1947; §123), Lamb (1879; §146), Goldstein (1960;
§4.2, 4.3), Truesdell (1954) and Truesdell and Toupin (1960).
Most of these describe the development of fluid vorticity; the
first application to magnetic fields in perfectly conducting
fluids is due to Lundgquist and Cowling. (Lundquist 1951, 1952).
The material description of fluid flow involves referring
variables to their valves at some initial instant t = O; such
initial valves will be distinguished by superscript (0). Con-
sider an arbitrary fluid particle; in an orthogonal cartesian
reference frame its position vector x at any time t is nnigrely

(o)

determined by its initial value x and by t

X = X (x(oz t) (5-6)

., o, ‘.
The Jacobian J of this transformation between 5( J and x (t being
assimed given) is the ratio by which a volime element moving

with the fluid has changed from its initial value, and therefore;

the ratio between initial and final densities in the particle's

vicinity

R ) = B (5-7)

Consequently, as long as this ratio is finite, a nnigue inverse

transformation exists

X, t) (5J8>



The two transformations are related, for any given t, by

I S (5-9)

(in the last equation and in those following the summation
convention for repeated indices is used).

From this, whether i equals 1 or not,

a [°% a’gi Yy l d a’(‘lc:) ( )
——7 — 0 =T+ = + 5-10
dt a)glcz) 3%, 3, ag‘ck)) dt sy |

Writing (5-3) in component form and substituting (5-10) gives

i o)
1(i i B d_v’gk ) -0 (5-11)
ac\ 5 )+ o) dt\ax,

It now becomes evident that the integrating factor is
ag?)/axi. Multiplying by it, summing over i and using (5-9)

leads to

- (5-12)

and since

380)
j

X, t=0
° i

i]
- 20 -




(5-12) integrates to

(o) _ o) 25

] P Ik,
1

(5-13)

Usually, B(?)is given and Bi required; using eq. (5-9) then

gives Cauchy's celebrated integral (Cauchy, 1815)

OX.
B. = P B(O) 1

i =5 I (5-14)
p o) J &o)
ox,
J
To investigate the form of eq. (5-14) in curvilinear coordinates
we adopt tensor notion and indicate contravariant components

of vectors by upper indices.

Equation (5-14), in cartesian coordinates, is then written

i_ P (o)) ax (5-15)

. i
Let this be transformed into cuyrvilinear coordinates y .

(o)

The transformation of BXl/aX is obtained from the chain

rule of differentiation

°)_1 (5-16)

i 0)]j .
while B~ and B( )] transform as contravariant vector components.

Substituting into (5-15) and using (5-9), which is valid for the
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yi as well, yields an eqnation having the same form as (5-15).
That equation is therefore valid for all xi, rectilinear and
cvrvilinear. In particular, in orthogonal curvilinear
coordinates with scale factors hi (e.g. Morse & Feshbach, 1953,
§1.3) the proper components B(i) of B (i.e. those defined in

terms of unit vectors) satisfy

o)
3 axd ' (5-17)
]

(summation on jonly)

Cauchy's integral is frequently written

X (5-18)

with similar notation in the eqnations leading to it. The
invariance of eq. (5-15) under coordinate transformation shows,

(o)

however, that V' 'x does not transform in the manner of a
second order tensor such as Vv [Such a transformation was

assumed by Elsasser (1956), leading to the incorrect eq. (7.12)

in his work]. Strictly speaking, V(o)§ is a double tensor field

(Michal 1927, 1947; Truesdell and Toupin, 1960; Ericksen, 1960),

the components of which may depend on two points in space - here

(o)

X and x - and the transformation of which may simuvltaneously

involve the local vector bases at both points. In the trans-

(o)

. o .
formation of V' 'x, for instance, V( ) transforms at 5(0) while

x transforms at the particle's given location; this is expressed
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by eq. (5-16). For a more rigorous and comprehensive treat-
ment of double tensor fields and their applications the reader
is referred to the works of Truesdell and Toupin (1960) and of
Ericksen (1960).

Cauchy's integral may be generalized for finite conductivity
(Mavarsberger, 1964). Let E¥ be the electric field in a frame
moving with the fluid, which to first order in v/c equals

4
2

E¥ = E + ~ (v x B)
Then (4-1) becomes

B v x (v x B) = = ~(V x E¥) (5-19)
ot

Retracing previous calcuvlations, one obtains

4 (E)»_M_B-_ c vy = =4 (v x B¥) (5-20)
\ p

prt ==

4 (ﬁ - )= B 15 (v x B%) - 9x'®) (5-21)

Integration then results in

B(x) = —- g(o) - j‘tJ(v x E*) - v§(°)dt - v(°)§ (5-22)

(o) 0
P - 23 -



where the integration extends along the track of that particle
which has position vector x at time t. The Jacobian J is

defined by eq. (5-7) and may be expressed in terms V(O)§

(compare Truesdell 1954, eq. 84-1), which is done in Maersberger's
work. Mawxsﬁerger also derives the magnetic analog of Ertel's
vorticity formula and some applications; for more details, the
reader is referred to his article.

(6) Application of Cauchy's Integral

Let dx be the (time dependent) element of length occupied by
an infinitesimal fluid filament. 1If at t = O the filament is

aligned with the magnetic field, one may write

ax°) - §<O)d7\ (6-1)

with dA an infinitesimal constant. Using the chain rule of
differentiation on (5-6) and the notation of (5-18) gives, for
t >0

(o)
p

dx = dg<°> . v(o)é = —5— Ba (6-2)

The above implies that the motion is line-preserving as could,
of course,be directly inferred from (4-8). Conversely, Cauchy's
integral may be easily derived from the line-preservation and
flux-preservation properties of B which follow from (1-2)
(Lundquist, 1951, 1952; result is expressed there in terms of
E-x —é(o)>-

Eliminatind d)\ between the absolute values of (6-1) and

(6-2) yields
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B dx P
- 6‘3
AORNOENC (6-3)

from which the intuitive interpretation of Cauchy's integral
may be summed up in three statements:

(1) The motion is line preserving.

(2) The magnetic field intensity is amplified in direct
proportion to the stretching dx/dx(o) of the fluid
along the field's direction.

(3) The magnetic field is amplified in proportion to the
bulk compression p/p(o)e

Most qualitative discussions of phenomena involving motion

of lines of force are based on one or more of the foregoing.
Consider the differential rotation of the sun: if initially

the lines of force of the solar magnetic field lie in meridional
planes, then the differential rotation of the solar surface,
becanse of line preservation, would tend to wind them into a
pair of spirals having opposite sense in opposite hemispheres.
The same process stretches solar matter along lines of force

and may therefore be expected to amplify the field. This is
roughly the basis of Babcock's theory of the solar cycle (1961);
the energy required for the field's amplification is vltimately
supplied by the mechanism which maintains the differential
rotation.

Again, when a star condenses out of a large volume of

tenrous conducting gas permeated by a weak magnetic field, the
field is likely to undergo considerable amplification dvre to
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compression. Since the field's final strength maybe high enough to
contribute appreciably to the forces acting on the gas, the

process is important in theories of stellar evolution. (Hoyle,
1957) .

Equations (6-2) and (6-3) may also be wsed numerically. By
following a small fluid element from a point at which B is known
and noting the variation of its density and its dimension along
the field, B at other points along the element's motion can be
found.

Finally, sitvations exist in which eq. (5-18) may be used
analytically. Consider, for instance, the solar wind emanating
from the rotating sun. It can be assumed (Stern 1964) that near
the sun the lines of force are radial (If one starts from a
rigidly rotating sun problems of continnity arise). Assuming
that the flow velocity v is radial and that both it and the
angular velocity w of the field's sonrce are constant, the con-
travariant components of eq. (5-6), inspherical coordinates

corotating with the sun, are

r=r + vt
o _ o) (6-4)
¢ = ¢(0) -t = ¢(0) % (r — r(o))

(0) 2
p = r
& (<)
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B =0 (6-6)

leading to the well-known angle (Parker, 1958)

x=arctg (w ' sin o/v) (6-7)

between the radial direction and that of B. Another example
of this type, an application of Cauchy's integral to a problem
in dynamo theory, has been given by Parker (1955).

(7) Nevtral Points in the Magnetic Field

We now consider the case in which the conductivity ¢ is finite,
thovgh still very large. When the velocity v is negligible, eq.

(4-2) reduces to

%%

1 2
el (7-1)

which yields a parabolic diffusion equation for each of the
cartesian components of B. The field then tends to decay ex-
ponentially with a decay time of order T = uOGLZ, where L is a

typical dimension of the field; the decay of the flnx passing a



given volime can also be visualized as a diffusive spreading-out .
of the lines of force with velocity of order L/7T =(uocL)—1- An
example of this is the decay of the magnetic field dve to a
current distribution in a conducting sphere (Elsasser, 1956).

The foregoing suggests that the general solution of (4-2)
is a blend of convectinn of the field by the fluid's velocity v
and its diffusive decay, the relative importance of the two effects
being determined by Rm. A unseful concept in this case, introduced
by Sweet (1950), is the slippage velocity of lines of force.
Sweet visnalized the velocity of lines of force in a condwcting
fluid as consisting of two components: a convection with the
fluid's velocity v and a slippage w due to finite conductivity.
In addition to finite conductivity he also considered the terms
added to E* in Ohm's law for dense plasmas |Spitzer, 1962 eq.
2-21; the largest of these terms appear in eq. (1-5)] lumping
them together in an "“impressed e.m.f." E . Since the total

—ext

velocity of the lines of force has to satisfy (1-2), one obtains

1 2
v = — -
x (wx B) + E .t " V*B (7-2)

The component of w parallel to the field is undefined in (7-2)

and it is natural to add

(w+B) =0 (7-3)

In what follows Ee will be neglected. Removing the curl and

xt

isolating w then gives
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w_gx(vxg) ' (
w = -";;;g?——— + W 7-4)

where w' is a relabeling velocity satisfying eq. (3-4).
Disregarding w', the slippage velocity is proportional to the
magnetic body force acting on the fluid. One thus gets the
picture of a viscous interaction between the fluid and the

lines of force, with the lines exerting a force on the fluid
proportional to their relative velocity. The order of magnitude
of wis (“ocL)w] and it thus furnishes a more precise definition
of the "diffusion velocity" previously introduced.

The analogy with viscosity can be expressed in a more
quantitative manner. It may be shown (for details and applications,
see Batchelor, 1950, and Landan & Lifshitz, 1960, §55) that in an
incompressible fluid with viscosity yp, subject to gravity and

pressure, equation (1-1) for the vorticity €l is replaced by

g*f—vX (v x Q) = wW?Q
which formally resembles (4-2). Because of this analogy, the
quantity
v = (uo) !
is sometimes called the magnetic viscosity (Elsasser, 1956,
eq. 2.13).
Equation (4-2) is of prime importance in the theory of

self-sustaining flvid dynamos. Special cases have been solved

by Elsasser (1946a, 1946b, 1947), Parker and Krook (1956),
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Stern (1964) and others, but the general treatment is difficult;
it does not reduce to scalar diffusion equations in the convected
frame for g and 8. This is in keeping with the general rule
that, except for simple cases, equations involving the vector
Laplacian do not rednce to a set of corresponding equations
involving scalar Laplacians.

In astrophysical applications many cases occur in which ¢
is exceedingly large. It has been pointed out by Sweet (1956)
and later by Parker (1957) and Pestschek (1963) that in these

cases, if the magnetic field possesses neutral points at which

its intensity vanishes, dissipative effects can be greatly
accelerated in the vicinity of these points. Following these
anthors, we now investigate highly conductive fluids in which
the effects of finite conductivity are small everywhere except
in the neighborhood of neutral points.

Astrophysical interest in nentral points dates from an
observation by Giovanelli (1947) that solar flares occur pre-
ferentially in the vicinity of neutral points of sunspot fields.
This idea - which still lacks complete confirmation because of
the difficvlty in identifying newvtral points on the sun - led
Dungey (1953, 1958, 1963) to develop a theory of acceleration of
charged particles by electric fields near nevtral points. Much
of what is said here about the classification and behavior of
nevtral points follows Dungey's work.

The magnetic field B near a nevutral point N may be expressed,

to lowest order, by a Taylor expansion
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(7-5)

1=
i

[+

]

where r is the radivs vector to N and g? = V@JN (svperscript T
denotes transpose) is a constant dyadic with zero trace,
symmetric if the current density at N vanishes. The direction
of B at N is vwndefined; nevertheless, it is useful to define
a "line of force throngh N" as a continnons smooth line passing
N and tangent to B at all other points (the term '"neutral line"
is sometimes used, bnt this is apt to be confused with a line
along which B vanishes).

Neutral points can be classified (Dungey 1953) by the nimber
of lines of force passing them. Let such a line have a wnit
tangent £ at N. At points on the line infinitesimally close

to N

AE

i
t

|
il

Aa - E=pu(d) g

the last equality following from the condition that B is tangent
to the line. Since A and u are both real (thowgh infinitesimal),
€ must be an eigenvector of a corresponding to a real eigenvalue.
A line though N on which B vanishes is also considered here a
line of force, corresponding to an eigenvalue zero. A bundle
of lines of force having a common tangent at N is connted as one
line only.

There exist therefore two kinds of neutral points. If a has

only one real eigenvalue, there is. only one line of force passing
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throngh N, which is then called (by the shape of lines of
force in its vicinity) an O-type neutral point. The behavior
of B near an O-type neuvtral point forms the basis of Cowling's
theorem (Cowling, 1934) on the impossibility of stationary
axisymmetric fluid dynamos. Alternatively, there may exist 3
real eigenvalunes ki, with corresponding uvnit vectors 51’ in
which case 3 lines of force or bundles of lines pass through

N and it is known as an X-type nentral point. All current-free
nevtral points belong to this class, for a is then symmetric
and has only real eigenvalues. 1In what follows, only X-type
nevtral points will be considered.

Becanse the divergence of B vanishes, the three eigenvalnes
add vp to zero and cannot all be of the same sign. 1t will be
assumed here that \; and A2 are positive and k3 negative; the
alternate case of two negative eigenvalves is then obtained by
reversing the magnetic field everywhere, a procedure which, it
will be noted, does not change the disposition of the magnetic
force. The vectors gi will be chosen of unit length and their
sense is determined by stiprlating that the scalar products
(E1 * E2), (E2 - E3) and (§1§2§3) are positive [the sign of
€1 * g3) cannot be freely chosen].

1f r lies in the plane of £; and §2, B is contained in that
plane as well. Choosing an orthogonal cartesian system for which
this is the (x,y) plane, it is found that everywhere in this plane
the qgnadratic form

r-B=arrr
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involves only the top left (2x2) submatrix a'of a, which has

the positive eigenvalues Ay and A;. If in addition no current

flows in the z-direction, a' is symmetric as well and therefore
positive definite. Then ;3 and 42 are orthogonal, r - B 1is
positive for all directions and the lines of force point outwards
everywhere in the (;1)52) plane, 1In this case each of the lines
of force to which E, and §: are tangent spreads out into a bundle
of outward-going lines, the two bundles, between them, covering

the plane. 1In the general case in which §; and E: are inclinced

at some angle 9, g‘ is positive definite only if

cos?® <Aiha/(hq1 + A2)? (7-6)

In other cases the lines of force diverging fron N bend so as to
approach N again before finally heading away (compare Diingey,
1963).

The claim is often made that lines of force are broken and
reconnected at newntral points, This will now be examined,

In the approximation (7m5) the cartesian components of B are
linear combinations of those of r and therefore, in this order

of approximation, VB vanishes. Neglecting E ¢ D (7-2), the

xt
slippage velocity w then satisfies (3-4) and therefore has the

character of a "relabeling velocity", by which lines of force in
a given pattern are transformed among themselves, without change

to the pattern as a whole.

Assume for simplicity a field in which there is no fluid
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motion: in such a field, w will be the entire velocity of
field lines, Near the nentral point, w is large (it diverges
at N) and it transforms field lines within a fixed pattern, but
at large distances fron N it diminishes rapidly to a negligible
magnitude.

Consider a line of force which initially passes points ABC
near N (Figure 3). A time interval dt later the line will have
shifted a distance w dt. At the "roots" of the line far from N
this shift is negligible, so that if one defines a line by its
roots one will be still observing essentially the same line.
Near N, however, there will be a real change, with the points
ABC moving to DEF and the line becoming differently connected.

The slippage velocity becomes infinite at N. This is necessary
to enable point A to "turn a corner" at N and transform to D
while keeping up with B and C as they transform smoothly into
E and F. As a consequence, no matter what the flow velocity v
of the condicting fluid is, there will always exist a small
neighborhood of N in which the convection of field lines by the
fluid velocity can be neglected and their velocity be taken as w.

To obtain some more insight into the slippage process near
neutral points we introduce an essentially two-dimensional model,
with vectors £; and £, making an angle 0 in the (x, y) plane and
€3 following the z-axis, and with corresponding eigenvalues A, —\
and O. The diffusion velocity w along the direction of (§; + E2)
is then radial (this corresponds to diffusion fron N to D in

Figure 3) and its magnitude at distance x is
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cos 8§

|w = W o x sin19/2) . (7-7)

One notes that the magnitude of B, represented by A, is
absent and that w increases as the angle between the axes
diminishes (it is zero for & = #1/5 becanse then V x B vanishes)
and also is inversely proportional to the distance from N.

(8) The Evolution of Neutral Points

The volume force on the flnid (T denotes transpose) is
X 1 T
FmjxBe—(a-a) "a-‘r (8-1)

The force vanishes at the neutral point and, because of its
orthogonality to B, has no radial component on the main axes

defined by the gi, In general, the radial component of F at a

point
regu §
is given by
1 2 )
rF =3& (_g_i-;_j) uguy (j =2y) (8-2)

This component vanishes on the quadric surface obtained by
equating (8-2) to zero, which is evidently a cone, since it
contains three non-coplanar straight lines (the main axes)
intersecting at the origin. The force then pushes inward

inside the cone and away fron N outside it - or vice versa,



depending on the sign of (§; ® B3). If the fluid flow follows

this force, it will tend either to open the cone np into the

vicinity of a plane ('the nentral plane") or to close it into a :
line ("nevtral filament"), either of them passing through N.
Such "folding" of the field was obtained by Dungey (1953,
1958) when he first treated the fluid's motion near the nentral
point. His calculation assitmed that pressvre and condnctivity
can be neglected and that the fluid velocity vanishes at the

nentral point, so that it can be expanded, analogously to (7-5)
v=>b-r (8-3)

Equation (1-2) then gives a (dyadic) equation

%a
(forming the scalar product with r recovers 1-2). Similarly,

the force equation

ST+ v - Vv =(jxB) (8-5)

reduces to

S+ b= (2 -a))

o

(8-6) .

1f initially both v and j vanish, so that the magnetic axes are

orthogonal and a is symmetric, Dungey showed that a small pertwrbation
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amplifies itself and produces a flow diminishing the angle

between axes of oppositely signed eigenvalues (angle € in

Figure 3). The current density i meanwhile increases, until

the electric field E* (in the fluid's frame) becomes appreciable.

Dungey called this an "instability"; it was his idea that such a

development takes place in solar flares and that the current

then becomes a 'discharge' accelerating particles to high energies.
While Dungey's derivation is formally correct, cantion must be

exercised in its interéretation, for the growth of a local instabil-

ity associated with N éontradicts the existence of stable neutral

points. Such points do exist. Consider for instance two fixed

parallel magnetic dipoles, directed along the line connecting

them and immersed in an infinite homogeneows conducting fluid at

rest (Figure 4). 1In snch a configuration a nentral point (more

precisely, a circwlar locns of nentral points) is formed between

Dungey. If this system were unstable, one would still expect that
after all flvuid motions and volime currents had decayed there would
remain a homogeneous medivm with two embedded dipoles. The final
energy then equals the initial one and there is none left to drive
the instability.

To vnderstand Dungey's results one notes that the effect dednced
by him is not confined to the neighborhood of N. Indeed, the
folding of the main axes and of the associgted system of field

lines extends as far as the approximation (7-5) does, and it is
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not at all certain that some surface can be found, enclosing

a relatively small region around N, beyond which the perturbation
is negligible. In the example given, at least, it seems that
no such surface exists and that the "folding'" near N is only
part of a deformation involving the entire field, becanse the
only source of energy available here is the relative potential
energy of the two dipoles. In particular, allowing the dipoles
to attract each other (Jackson 1962, §4.2) throvgh a finite
distance will release energy and will also fold the lines near
the nevtral point in the manner described by Dungey. 1t thns
seems that Dungey's mechanism is actwally the description of a
lack of equilibrivm in the ehtire field rather than of an
instability associated with the neuntral points.

A problem somewhat similar to Dungey's was treated by Chapman
and Kendall (1963) who considered a line along which the field
vanishes, surrounded by a tnbe of conducting fluid with finite
cross section. In this case Dungey's instability proceeds withont
reference to the magnetic sources, since the fluid is decoupled
from them by the vacuum surrounding the twbe. Such decoupling
seems unlikely, however, in astrophysical applications.

To obtain any local behavior at the neutral point while the
field is held fixed at some distance from it, one has to extend
the expansion (7-5) at least to second order. In principle,
equations (8-4) and (8-6), generalized to this order, or the use

of an energy principle, wovld then show vnder what conditions, if
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any, can a pnrely local instability proceed at the nevtral point.

Attention was first called to the importance of motion of the
field's sonrces by Sweet (1956, 1958). He considered in particular
the neutral point between the two dipoles described previonsly
(Figure 4) and assvmed each dipole to be embedded in a mass of
conducting fluid, the two masses moving in opposite directions
towards the nentral point.

Sweet did not restrict the model to electromagnetic forces
alone. In this connection, he noted that forces due to pressure
gradients will predominate near the nentral point, since the
electromagnetic force tends there to zero., The élow produced
by mechanical forces when two fluid masses are pressed together
is similar to the one occurring in Dungey's model: the flwid is
squeezed out along a plane or line. If the nentral point is
initially on such a "neutral plane" (or possibly, 'neutral filamen
Sweet expected the flow to distort the magnetic field as was pre-
viounsly described; leading to its flattening near the plane and
to the bnild-vp of current density and electromagnetic forces. Th
process is finally limited by the necessity of maintaining a narro
region by which the fluid may escape from the neighborhood of the
nevntral point. It is in this final state that enhanced diffusion
near the newtral point takes place,

The following simple model is due to Parker, who followed Swee

ideas guantitatively in considerable detail (1957, 1963). Parker
assumed that the region around the newvtral point N collapses into

a thin "boundary layer'" of constant thickness 26. The fluid
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approaches the layer with velocity u along the direction

normal to it, which will be chosen as the x axis; the y direction,
along which the flnid is squeezed out, is then that of the field
Eo far from the layer, which is assimed to be of constant
magnitvde but having opposite polarities on different sides of

the layer. The magnetic pressnre on the flanks of the boinndary
layer is balanced, near N, ty an increase in fluid pressure.

Let the layer have a finite length 2L in the y direction. At
| y| = L, the fluid leaves the layer and if the field and pressure
have dropped close to zero near this point, the fluid's kinetic
energy density p v?/2 will be roughly that acquired by a pressure
drop of Boz/2po. This means, then, that the velocity of the fluid

leaving the layer is of the order of the Alfvén velocity

Bo
V= —— (8-7)
HoP
By continuvity

and if y and L are given, 6 may be found.

Inside the layer opposing field lines diffuse towards each
other with a velocity of the order (uoc 8) ' and ultimately merge.
Outside the boundary, field lines move with the flvwid's velocity

u. In order for the two motions to be continvous, one needs

- 40-




u (poo §) 1 (8-9)

Eliminating 6 between the last two equrations gives
u ~ (vA/pOo L) (8-10)

In applying the above to the sun Parker asswmmed that a solar
flare arises when two regions containing opposing magnetic
fields are prshed against each other with velocity u. The

field intensity, density and the total energy released can be
estimated from observations; from the total energy, the thickness
D of the region of field annihilation is found to be of the order
of 10 km. The total time D/y for the annihilation of magnetic
energy 1is then 104 - 10° seconds, as compared to observed times
of order 10° seconds.

The above argument may be modified taking into account more
details of the field's structure near the newtral point, assiming
that it has the form given in Figure 3 with the angle 6 small bnrt
finite. There will exist a region aronnd N in which w predominates,
and as a simple approximation one may neglect v in this region and
neglect w ontside it., If & is the extent of the region in x
direction (along the line NA in Fignre 3) then its length in the y
direction will be of the order &/sin % 8.’

Equation (8-9) then expresses the fact that on the bowvndary

of this central region, on the x-axis, the slippage velocity equals
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the impinging flvid velocity. However, since this transition
occurs close to a stagnation point of the flow, the impinging
velocity may be mnch less than the velocity v of the flvid far
from the layer. Writing the impinging velocity as eu, where

€ <1, one finds that a factor e-% must be added to equation
(8-10). 1f ¢ is very small, this increases u considerably and
achieves a corresponding reduction in annihilation time.

In addition, wnless the angle 6 is extremely small, the
central region will occnpy only part of the boundary layer,
terminating at about lyl = A/sin 3 ©. Beyond this point the
layer is likely to broaden; it will certainly do so if the flow
resembles that given by egnation (8-3). Equation (8-8) then also
reqrires modification and again this leads to an increase in u.

A more elaborate extension of Parker's model was postulated
by Petscheck (1963), who divided the boundary layer into two
regions. In a section O < |y| < y* straddling the nentral point
the mechanism snggested by Sweet and Parker holds; for y*<\yl< L,
however, the layer diverges at an angle of abont 0.1 radians, the
flnid velocity‘is maintained near VA and magnetic energy is
removed by propagation of hydromagnetic waves. 1In application to
solar flares, times of the order of 100 seconds are obtained,
because the length 2 y* of the central region is now mich less than .
the total length 2L and therefore the thickness 20 near N is
correspondingly reduced.

Petschek also derives an uvpper limit to the rate of line re-
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combination. The main disadvantages of his approach are
that it is not clear that the "wave region' envisioned will
actinally be created and that his assumption of a curl-free
magnetic field everywhere ontside the boundary layer leads to
the correct maximum recombination rate.

In conclvsion it shouvld be stressed that the theory of
nevtral points is very far from complete at this stage. Almost
all existing theories assime two-dimensional structwure, the
achievement of a nearly time-independent collapsed state and
the stagnation of the flvid flow at the nevtral point, any or
all of which may not be justified. Even if an equilibrivm in
the collapsed state occurs, it may be unstable (Parker, 1963;
Jaggi, 1963; Severny, 1963). Whether such instability merely
leads to small-scale turbulence and to an increase in effective
registivity or actually disrnpts the structure of the boundary
layer remains yet to be seen.

The most important deficiency of the theory of nentral
points, however, is the lack of experimental confirmation.,
Thongh the theory was originally conceived to explain solar flares,
the complexity of sunspot fields and of flares and the difficulty
in observing them have prevented, so far, any conclusive proof
of an association between flares and neutral points. There may
be some additional evidence from the '"tail'" of the earth's magneto-
sphere (Ness, 1965) where a region of weak magnetic field, commonly
called "neutral plane', has been observed near the magnetic equator

on the night side of the earth, separating oppositely directed
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fields. Both the magnetic field and particle density are much
lower here than near solar flares; whether rapid reconnection

of field lines (Axford et al.,1965) and particle acceleration
(Speiser, 1965; Coppi et al., 1966) occur under these circumstances
is still subject to controversy (Dessler, 1965).

Finally, an attempt to investigate neutral points experi-
mentally in the laboratory has been recently started (Bratenahl
& Hirsch, 1966). The nentral point (or rather, a line of nentral
points) was obtained by allowing two expanding cylindrical fields
to collide, leading to a sitvation somewhat resembling that in-
vestigated theoretically by Green (Green, 1965). Observations
of the evolution of these fields strongly svggest that a recon-
nection of magnetic field lines does in fact occvr. However,
instead of the field tending to a relatively slowly varying
collapsed state, oscillations are observed with field lines near
the nentral point alternately folding and opening.

It thus appears that what is most needed in the study of
nentral points is observational evidence, either in the laboratory
or in space. Until such evidence becomes available, the preceding
can serve as no more than a tentative theory.
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